Possible Argon Compounds

By JOEL F. LIEBMAN* and LELAND C. ALLEN

(Department of Chemistry, Princeton University, Princeton, New Jersey 08540)

Summary Theoretical investigation of the ${}^{1}\Sigma\sigma^{2}\pi^{4}\pi^{*4}$ state of ArF⁺ and ArO has shown ArF⁺ to be sufficiently stable to allow the probable isolation of $ArF^+ PtF_8^-$.

THE experimental bound-state chemistry of xenon and krypton is well characterized, but there are essentially no rigorous calculations on these systems. However, there are ab initio calculations on bound-state helium and neon compounds,¹ but no experimental verification. We have investigated ArF+ and ArO by an LC(H-F)AO-MO-SCF procedure² with programmes developed in this laboratory.³

The ${}^{1}\Sigma\sigma^{2}\pi^{4}\pi^{*4}$ state of ArF⁺ is calculated to be highly bound with $r_e = 1.8$ Å and D_e at least 70 kcal./mole; D_e $= E(R_{\max}) - E(r_e) [\operatorname{not} E_{\infty})]$ as Hartree-Fock calculations often separate into mixture of states and/or do not converge at all for large internuclear distances. There appears to be clean separation to the allowed ¹S Ar + ¹D F⁺. Open-shell states have not been studied and thus we cannot preclude level-crossing with the ${}^{1}\Sigma\sigma^{2}\sigma^{*2}\pi^{4}\pi^{*2}$ state or separation to $^{2}P \operatorname{Ar}^{+} + ^{2}P \operatorname{F}$. The Table contains the requisite R/E data for both ${}^{1}\Sigma\sigma^{2}\pi^{4}\pi^{*4}$ ArF⁺ and ArO. As experimentally observed with Xe and probably with Kr,4 and predicted for He and Ne,¹ the most logical compound to consider is ArF⁺ PtF_6^- . Synthesis from $Ar + F_2 + PtF_6$ seems the simplest experimental route.

The ${}^{1}\Sigma\sigma^{2}\pi^{4}\pi^{*4}$ state of ArO was found to have a repulsive potential surface. This does not militate against the possibility of an open shell state with a potential minimum.

The experimental data on ArO shows the species to be short lived but is insufficient to appraise whether the ${}^{1}\Sigma\sigma^{2}\pi^{4}\pi^{*4}$ or ${}^{1}\Sigma\sigma^{2}\sigma^{*2}\pi^{4}\pi^{*2}$ state was observed.⁵

R				$^{1}\Sigma\sigma^{2}\pi^{4}\pi^{*4}$ ArF+	$^{1}\Sigma\sigma^{2}\pi^{4}\pi^{*4}$ ArO
2				$-624 \cdot 3423$	-600.0240
3				$-625 \cdot 5038$	$-601 \cdot 3177$
$3 \cdot 5$				$-625 \cdot 5399$	
4				$-625 \cdot 5166$	$-601 \cdot 4583$
5		••		$-625 \cdot 4592$	$-601 \cdot 4705$
6	• •	• •		$-625 \cdot 4291$	$-601 \cdot 4715$
8	••	• •	• •	$-625 \cdot 4153$	

Internuclear distances in Bohrs; energies in Hartrees.

We are beginning an investigation of ArF₂ by VB to complement the theoretical data on the unbound HeF₂ and NeF_2 and the experimental data on the bound KrF_2 and XeF_2 . If ArF^+ PtF_6^- is stable, low temperature reaction with KF in an inert solvent should provide a viable synthetic route to ArF_2 .

We thank Neil Bartlett for providing unpublished data and interpretations. One of us (J.F.L.) thanks the NSF for a fellowship. We also acknowledge the support of our research by the Power Branch of the Office of Naval Research.

(Received, September 8th, 1969; Com. 1354.)

¹ J. F. Liebman and L. C. Allen, submitted to J. Amer. Chem. Soc.

² The Ar wavefunctions were taken from S. Huzinaga, J. Chem. Phys., 1969, 50, 1371; the s functions of F were the s Gaussian lobes calculated by J. Whitten, *ibid.*, 1966, 44, 359; 1965, 42, 1293.
³ See P. A. Kollman and L. C. Allen, J. Chem. Phys., in the press, for a description of the programme and method of calculation.
⁴ Dr. N. Bartlett, personal communication.
⁵ J. R. Wilt, Ph.D. Thesis, University of California, Los Angeles.